

Progressive Education Society's

Modern College of Arts, Science & Commerce Ganeshkhind, Pune – 16 **End Semester Examination: Jan.2023**

Faculty: Science and Technology

Program: BscGen03 Semester:I SET: B

Program (Specific): Mathematics Course Type:Core Type

Class:F.Y.Bsc.(Regular)

Name of the Course: Calculus-I Max Marks:35 Course Code:22-MT-112 Time: 2Hr

Paper: II

Instructions to the candidate:

1) There are 4 sections in the question paper. Write each section on separate page.

- 2) All Sections are compulsory.
- 3) Figures to the right indicate full marks.
- 4) Draw a well labelled diagram wherever necessary.

SECTION: A

Q1) Choose the correct alternative:

[Marks 5]

- 1. Which of the following subset of *R* is not bounded:
 - a) {1, 2, 3, ..., 100}

b) N

c) [-1,1]

- d)(-1,1)
- 2. The monotonically increasing sequence is convergent if and only if it is
 - a) bounded above

b) bounded below

c) unbounded

- d) oscillating
- 3. The sequence $\left\{\sin \sin\left(\frac{n\pi}{2}\right)\right\}$, $n \in \mathbb{N}$ is _____
 - a) convergent

b) bounded

c) increasing

- d) decreasing
- 4. The series $\sum_{n=1}^{\infty} \frac{1}{n^p}$ is convergent if _____

 - a) p > 1 b) 0

 - c) p = 1 d) all $p \in R$

- 5. The function $f(x) = x^3$ is ______ b) odd function

- c) periodic function
- d) neither even not odd function

Q2) Attempt any four:

[Marks 4]

- 1. Solve the inequality: $|4x 5| \le 13$.
- 2. Define monotonically increasing sequence, monotonically decreasing sequence with one example of each.
- 3. Discuss the convergence of the following sequence : {1, 2, 1, 2, 1, 2, ...}.
- 4. Find $\left(1 + \frac{1}{n}\right)^{3n}$.
- 5. State Comparison test for convergence of series.
- 6. Find the domain and range of the function: $f(x) = \frac{1}{\sqrt{2x-7}}$.

SECTION: B

Q3) Attempt any four:

[Marks 8]

- 1. Prove that $|a + b| \le |a| + |b|$, $\forall a, b \in R$.
- 2. Find the supremum and infimum of the following set $S = \{1 \frac{1}{n} \mid n \in N\}$.
- 3. Find: $\frac{n^{10}}{10^n}$.
- 4. Disccuss the convergence of the following series :

 a) $\sum_{n=1}^{\infty} \frac{\cos\cos(2n)}{n^3}$ b) $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$.

a)
$$\sum_{n=1}^{\infty} \frac{\cos\cos(2n)}{n^3}$$

b)
$$\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$$

- 5. Discuss for what values of p the series converges: $\sum_{n=1}^{\infty} \frac{1}{n(\log n)^p}$
- 6. Sketch the graph of following function:

a)
$$f(x) = x^2$$
, $x \in [-1, 1]$

b)
$$f(x) = \sin \sin x$$
, $x \in R$

SECTION: C

Q4) Attempt any Four:

[Marks 8]

- 1. Show that if $a \neq 0$, $b \in R$, are such that a.b = 1 then, $b = \frac{1}{a}$.
- 2. Find the rational number between $\sqrt{5}$ and $\sqrt{6}$.

3. The first few terms of the sequence are given below , find the formula for n^{th} term of the following sequences:

a)
$$\left\{1, \frac{1}{3}, \frac{1}{5}, \frac{1}{7}, ...\right\}$$

a)
$$\left\{1, \frac{1}{3}, \frac{1}{5}, \frac{1}{7}, \ldots\right\}$$
 b) $\left\{\frac{1}{2}, \frac{1}{4}, \frac{1}{6}, \frac{1}{8}, \ldots\right\}$.

- 4. Discuss the convergence of the series : $\sqrt{\frac{1}{4}} + \sqrt{\frac{2}{6}} + \dots + \sqrt{\frac{n}{2(n+1)}}$
- 5. Determine whether the mapping $f: N \rightarrow N$ defined by $f(x) = \frac{x}{2}$ is a function or not Justify!
- 6. Define least integer function and find [2.6], [-1.5]

SECTION: D

Q5) Attempt any two:

[Marks 10]

- 1. Find all $x \in R$ that satisfy the following inequality: |3x + 4| < |x + 2|
- 2. Show that every convergent sequence is bounded . Is the converse true?
- 3. Show that the following sequences are divergent

a)
$$\{1 + (-1)^n\}$$
 b) $\{\sin \sin \frac{n\pi}{4}\}$.

4. Using Cauchy condensation test, show that the series $\sum_{n=1}^{\infty} \frac{1}{n^2}$ is convergent